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Abstract

In this work, we study the Abelian integral I(h) corresponding to the following Liénard
system,

ẋ = y, ẏ = x3(x− 1)3 + ε(a+ bx+ cx3 + x5)y,

where 0 < ε ≪ 1, a, b and c are real bounded parameters. By using the expansion of I(h)
and a new algebraic criterion developed in [Grau et al., 2011], it will be shown that the sharp
upper bound of the maximal number of isolated zeros of I(h) is 4. Hence, the above system can
have at most 4 limit cycles bifurcating from the corresponding period annulus. Moreover, the
configuration (distribution) of the limit cycles is also determined. The results obtained are new
for this kind of Liénard system. MSC: 34C07; 34C08; 37G15; 34M50

Keywords: Melnikov function, Abelian integrals, Limit cycles, Liénard system, nilpotent center and saddle.

1 Introduction and statement of the results

The second part of the famous Hilbert 16th problem is to find an upper bound to the maximal
number and to determine configurations of limit cycles of planar polynomial differential systems
defined by

dx

dt
= Pn(x, y),

dy

dt
= Qn(x, y),

for all possible Pn and Qn where Pn and Qn are real polynomials in x, y of degree n. The maximal
number of limit cycles is usually denoted by H(n), and it is so called the Hilbert number.

In general, determination of H(n) is a very difficult problem. Keeping this in mind, Arnold
proposed in [Arnold, 1990] ten problems, that it is named the 7th problem as follows:

Consider a deformation of a planar Hamiltonian system as follows:

dH + ε(fdx+ gdy) = 0, (1)

where f and g are polynomials in x, y of degrees at most n, ε > 0 is a small parameter. Abelian
integrals related to deformation (1) are defined by

I(h) =

∮
Lh

f(x, y)dx+ g(x, y)dy,

∗E-mail address: r.asheghi@cc.iut.ac.ir
†E-mail address: a.bakhsh@math.iut.ac.ir. R. Asheghi thanks Isfahan University of Technology for support.
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where

Lh := {(x, y) ∈ R2 : H(x, y) = h, h1 < h < h2}.

The Arnold 7th problem (the first part): How many isolated zeros the Abelian integrals I(h)
would have in the domain of definition if f , g and H are polynomials with known degrees?

The first part of the above-mentioned problem is called the weakened (infinitesimal or tangential)
Hilbert 16th problem.

This article studies the number and distribution of limit cycles of a polynomial Liénard system
with a nilpotent center and a nilpotent saddle connection. The problem considered here is related
to the still open Hilbert 16th problem.

Now let us clarify the results of this article. Consider a perturbed planar Hamiltonian system of
the form

ẋ = Hy + εp(x, y, ε, δ) (2)

ẏ = −Hx + εq(x, y, ε, δ)

where p, q and H are Cω functions, ε is a small positive parameter and δ is a vector parameter
where δ ∈ D ⊂ Rm and D is a compact set. Note that (2)|(ε=0) is a Hamiltonian system.

Now suppose (2)|(ε=0) has a family of periodic orbits

Lh := {(x, y) ∈ R2 : H(x, y) = h, h1 < h < h2}

continuously depending on the parameter h. Associated to periodic orbits Lh, we can define the
function

M(h, δ) :=

∮
Lh

qdx− pdy|ε=0,

which is called the first order Melnikov function or Abelian integral [Ilyashenko, 2002], and it is very
important in the study of bifurcations of limit cycles in the family (2).

In this work, the following Newtonian system will be considered

ẋ = y, ẏ = x3(x− 1)3, (H0)

with the Hamiltonian function

H(x, y) =
1

2
y2 − 1

7
x7 +

1

2
x6 − 3

5
x5 +

1

4
x4, (3)

which has a nilpotent saddle at S(1, 0), a nilpotent center at O(0, 0) and a saddle connection L 1
140

.

All orbits Lh inside L 1
140

, for h ∈
(
0, 1

140

)
, are closed.

We will study a perturbation of (H0) in the form

ẋ = y,

ẏ = x3(x− 1)3 + ε(a+ bx+ cx3 + x5)y, (Hε)

and especially, the related Abelian integral:

I(h, δ) =

∮
Lh

(a+ bx+ cx3 + x5)ydx = aI0(h) + bI1(h) + cI3(h) + I5(h), (4)

where Ii(h) =
∮
Lh
xiydx (i = 0, 1, 3, 5) and Lh is oriented clockwise. Here 0 < ε≪ 1 and δ = (a, b, c)

belongs to any compact subset of R3.

Our main result is the following.
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Theorem 1.1. The exact upper bound for the maximal number of isolated zeros of I(h, δ), defined
in (4), is 4 on the open interval (0, 1

140 ). Hence, the Liénard system (Hε) can have at most 4 limit
cycles bifurcating from the corresponding period annulus. Moreover, the distribution of the limit
cycles of system (Hε) is illustrated in Figure 2.

The main theorem will be deduced by proving four propositions in Section 3 and one lemma in
Section 4. For more details, see the Propositions 3.2-3.5 in Section 3, Lemma 4.3 in Section 4, and
finally Corollary 4.4 at the end of the present paper. Before that, we give some preliminaries which
are used to find the number of limit cycles bifurcating from the period annulus {Lh}h in Section 2.

2 Preliminary

In this section, some definitions will be provided and some lemmas will be recalled which will be
used in the proof of the main results.

Definition 2.1. Let f0, f1, ..., fn−1 be real analytic functions on some open interval I of R. Then

(i) The set {f0, f1, ..., fn−1} is called a Chebyshev space on I if any nontrivial linear combination

α0f0(x) + α1f1(x) + ...+ αn−1fn−1(x)

has at most n− 1 isolated zeros on I.

(ii) The set {f0, f1, ..., fk−1} is called a complete Chebyshev space on I if for all k = 1, 2, ..., n, any
nontrivial linear combination of (f0, f1, ..., fk−1) as

α0f0(x) + α1f1(x) + ...+ αk−1fk−1(x)

has at most k − 1 isolated zeros on I.

(iii) The set {f0, f1, ..., fk−1} is called an extended complete Chebyshev space on I if for all k =
1, 2, ..., n, any nontrivial linear combination

α0f0(x) + α1f1(x) + ...+ αk−1fk−1(x)

has at most k − 1 isolated zeros on I counting multiplicity.

Remark 2.2. Recall that a real vector space V of real analytic functions defined on some real
interval I is considered to be Chebyshev, provided that each f in V has at most dimV − 1 isolated
zeros (counted with multiplicity) on I, and Chebyshev with accuracy m, when each f in V has at
most dimV +m− 1 isolated zeros at hand.

Definition 2.3. Let f0, f1, ..., fk−1 be real analytic functions on some open interval I of R. The
Wronskian of (f0, f1, ..., fk−1) at x ∈ I is

W [f0, f1, ..., fk−1](x) =

∣∣∣∣∣∣∣∣∣
f0 f1 . . . fk−1

f ′0 f ′1 . . . f ′k−1
...

...
...

...

f
(k−1)
0 f

(k−1)
1 . . . f

(k−1)
k−1

∣∣∣∣∣∣∣∣∣ .
The following result concerning an extended complete Chebyshev space is well known.

Lemma 2.4. The set {f0, f1, ..., fn−1} is an extended complete Chebyshev space on I if and only if,
for each k = 1, 2, ..., n,

W [f0, f1, ..., fk−1](x) ̸= 0 for all x ∈ I.
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Figure 1: The level sets of (H0).

Suppose (2)|ε=0 has a nilpotent center O(0, 0), a homoclinic loop Lhs passing through a nilpotent
saddle S(xs, ys) and surrounding O(0, 0). We suppose that the periodic orbits are oriented clockwise
and closed curves inside the homoclinc loop Lhs are parameterized by the Hamiltonian value h such
that H(xs, ys) = hs corresponds to a homoclinc loop Lhs and H(0, 0) = 0 corresponds to a nilpotent
center (Figure 1).

Correspondingly, we have

I(h, δ) =

∮
Lh

qdx− pdy, h ∈ (0, hs).

By using the notations of [Jiang & Han, 2008; Han et al., 2008], when O(0, 0) is a nilpotent
center we can suppose

H(x, y) =
y2

2
+ h̄40x

4 +
∑
i+j≥4

h̄ijx
iyj , h̄40 > 0, (5)

and

p(x, y, δ) =
∑
i+j>0

āij(δ)x
iyj , q(x, y, δ) =

∑
i+j>0

b̄ij(δ)x
iyj .

For the expansion of I(h, δ) near the nilpotent center O(0, 0) we have from [Jiang & Han, 2008] that

I(h, δ) = h
3
4

∑
k⩾0

bk(δ)h
k
2 , as h −→ 0+. (6)

Under (5), the coefficients bj , j = 0, 1, 2, ..., n, can be obtained by following the method in [Jiang &
Han, 2008].

Now let the outer boundary of the family {Lh}h∈(0,hs) be a homoclinic loop given by

Ls := Lhs = {(x, y) ∈ R2 : H(x, y) = hs},

that is homoclinic (connected) to a nilpotent saddle at (xs, ys). Then by [Zang et al., 2008], it is
possible to write

H(x, y) = hs −
1

4
(x− xs)

4 +
∑
i≥5

hi0(x− xs)
i + (y − ys)

2
∑
i+j≥0

hij(x− xs)
i(y − ys)

j . (7)
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Also, we can write

p(x, y, δ) =
∑
i+j≥0

aij(δ)(x− xs)
i(y − ys)

j , q(x, y, δ) =
∑
i+j≥0

bij(δ)(x− xs)
i(y − ys)

j .

The following asymptotic expansion of the Abelian integral I(h, δ) is obtained in [Zang et al., 2008]
near the nilpotent saddle loop.

Lemma 2.5. ([Zang et al., 2008]) Let (7) hold. Then for system (2), near the critical value h = hs
(0 < hs − h ≪ 1) corresponding to the nilpotent saddle loop Ls through the point (xs, ys) as a
nilpotent saddle, we have

I(h, δ) = c0 + c1|h− hs|
3
4 + c2(h− hs) ln |h− hs|+ c3|h− hs|+ c4|h− hs|

5
4 + c5|h− hs|

7
4

+ c6(h− hs)
2 ln |h− hs|+O((h− hs)

2), as h −→ h−s , (8)

with

c0 = I(hs, δ) =

∮
Ls

qdx− pdy, c1 = −4
√
2d0,0∆0,2

3
, c2 =

√
2d1,0
2

,

c3 =

∮
Ls

(px + qy − a10 − b01)dt for c1 = c2 = 0, c4 = −4
√
2d2,0∆2,2

5
,

c5 =
8
√
2(d0,2 − 2d4,0)∆0,2

21
, c6 =

√
2(4d5,0 − d1,2)

8
,

where ∆0,2 > 0 and ∆2,2 < 0 are real constants and di,0 (i = 0, 1, 2, 4, 5), di,2 (i = 0, 1), are some
coefficients depending on hij, ai,j and bi,j (0 ≤ i, j ≤ 7). The coefficients c2, c3, c5, c6 are called local
coefficients of system (2) at the nilpotent saddle.

The next theorem follows by modifying the proof of part (ii) of Theorem 1.5 in [Sun et al., 2011].

Theorem 2.6. Consider the expansions (6) and (8) of I(h, δ) for system (2). If there exists some
δ0 ∈ Rm such that

c0(δ0) = c1(δ0) = ... = ck1−1(δ0) = 0, ck1(δ0) ̸= 0,

b0(δ0) = b1(δ0) = ... = bk2−1(δ0) = 0, bk2(δ0) ̸= 0,

and

rank
∂(c0, c1, ..., ck1−1,b0,b1,...,bk2−1

)

∂(δ1, ..., δm)
(δ0) = k1 + k2,

then we would have k1 + k2 +
1−sgn(M(h1,δ0)M(h2,δ0))

2 limit cycles for some (ε, δ) near (0, δ0), from
which k1 limit cycles are near the homoclinic loop L 1

140
, k2 limit cycles are near the center O(0, 0) and

1−sgn(M(h1,δ0)M(h2,δ0))
2 limit cycle are surrounding the center O(0, 0), where h1 = hs−ε1, h2 = 0+ε2

with ε1 and ε2 are positive and very small.

3 Asymptotic expansions of the Melnikov function I(h,δ)

In this section we will apply Lemma 2.5 to system (Hε) and will obtain the asymptotic expansion
of the Abelian integral I(h, δ) in (4) as h→ ( 1

140 )
−. It is clear that on the loop L 1

140
we have that

y±(x) = ± 1

70

√
1400x3 + 700x2 + 280x+ 70 (x− 1)

2
.
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By applying the formula for c0(δ) in Lemma 2.5, we have

c0 =

∮
L 1

140

qdx− pdy = 2

∫ 1

xl=−0.3423840948

(a+ bx+ cx3 + x5)y+(x)dx

= −18.28103849 a− 6.470189824 b− 0.2839284832 c+ 0.01549000622.

To compute the expressions for the local coefficients c1, c2 described in Lemma 2.5, we must translate
the saddle point S = (1, 0) to the origin. To this end, we make the transformations X = 1−x, Y = y
and T = −t and still denote X,Y and T by x, y and t, respectively. Then system (Hε) becomes

ẋ = y, (9)

ẏ = −x3(x− 1)3 + εq(x, y),

where

q(x, y) = (a+ c+ b+ 1− (b+ 3 c+ 5)x+ (10 + 3 c)x2 − (c+ 10)x3 + 5x4 − x5)y.

The Hamiltonian function of system (9)|ε=0 is defined as

H̃(x, y) =
1

2
y2 − 1

4
x4 +

3

5
x5 − 1

2
x6 +

1

7
x7.

Thus, by using Lemma 2.5, it is founded that

∆0,2 = 1.311028778
√
2,

d0,0 = a+ b+ c+ 1,

d1,0 =
6

5
a+

1

5
b− 9

5
c− 19

5
,

c1 = −3.496076742 a− 3.496076742 b− 3.496076742− 3.496076742 c,

c2 =
1

10

√
2 (6 a+ b− 19− 9 c) .

If c1 = c2 = 0 and hence a = 4 + 2 c and b = −3 c− 5, then we would have

c3 =

∮
L 1

140

(px + qy)dt = 140

∫ 1

−0.3423840948

(a+ bx+ cx3 + x5)

(x− 1)
2 √

1400x3 + 700x2 + 280x+ 70
dx

= −1773.900826 c− 4170.105830.

For the expansion of the Melnikov function (4) of system (H0) near the nilpotent center L0 = {(0, 0)},
we will prove the next result.

Lemma 3.1. The Abelian integral I(h, δ) given in (4) has the asymptotic expansion

I(h, δ) = h
3
4

∑
k⩾0

bk(δ)h
k
2 , (10)

near the nilpotent center (0, 0), where 0 < h ≪ 1 and δ = (a, b, c). Following the method in [Jiang
& Han, 2008], the first coefficients of the above expansion are given by

b0 = 2B

(
1

4
,
3

2

)
a,

b1 =
12

25
B

(
3

4
,
3

2

)
(15 b+ 19 a) ,

b2 =
2

875
B

(
5

4
,
3

2

)
(10500 c+ 28960 b+ 36873 a) ,

b3 =
4

3125
B

(
7

4
,
3

2

)
(52500 + 243500 c+ 190343 b) .
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Proof. Considering the oval Lh for 0 < h ≪ 1, we denote the abscissas of the intersection points of
Lh with the negative and positive half x-axis by xl(h) and xr(h), respectively. Thus, xl(h) < 0 <
xr(h) < 1 and A(xl(h)) = A(xr(h)) ≡ h, where

A(x) = x4
(
−1

7
x3 +

1

2
x2 − 3

5
x+

1

4

)
.

It can be calculated that

xr(h) = g−1(
4
√
h) =

√
2

4
√
h+

6

5

√
h+

38

25

√
2h3/4 +

4196

875
h+O(h5/4) > 0,

xl(h) = g−1(− 4
√
h) = −

√
2

4
√
h+

6

5

√
h− 38

25

√
2h3/4 +

4196

875
h+O(h5/4) < 0,

where g(x) = sign(x) 4
√
A(x). Define a new function as

F (x, z) := x

(
−1

7
x3 +

1

2
x2 − 3

5
x+

1

4

) 1
4

− z, (x, z) ∈ (R2, 0).

The implicit function theorem implies that there exists a smooth function x = ψ(z) for |z| ≪ 1 such
that F (ψ(z), z) ≡ 0. By using Maple 18, it can be deduced that for 0 < |z| ≪ 1,

x = ψ(z) =
√
2z + 6/5 z2 +

38

25

√
2z3 +

4196

875
z4 +

36873

4375

√
2z5 +O

(
z6
)
.

Under the transformation

A(x) = z4, or x

(
−1

7
x3 +

1

2
x2 − 3

5
x+

1

4

) 1
4

= z, (11)

the Abelian integral (4) changes into

I(h, δ) = 2
√
2

∫ xr(h)

xl(h)

(a+ bx+ cx3 + x5)
√
h−A(x)dx

= 2
√
2

∫ h
1
4

−h
1
4

(a+ bx+ cx3 + x5) |x=ψ(z)
√
h− z4ψ′(z)dz

= 2
√
2
+∞∑
k=0

ak(δ)Ek(h), (12)

where

Ek(h) =

∫ h
1
4

−h
1
4

zk
√
h− z4dz, for k = 0, 1, 2, · · · ,

and

a0 = a
√
2,

a1 =
2

5
(6 a+ 5 b) ,

a2 =
6

25

√
2 (15 b+ 19 a) ,

a3 =
4

875
(875 c+ 4196 a+ 3290 b) ,

a4 =
1

875

√
2 (10500 c+ 28960 b+ 36873 a) ,

a5 =
4

875
(32709 b+ 13650 c+ 1750) ,

a6 =
2

3125

√
2 (52500 + 243500 c+ 190343 b) .
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Therefore in order to get the asymptotic expansion of I(h, δ) near h = 0, it is crucial to compute
the following elliptic integrals

Ek(h) =

∫ h
1
4

−h
1
4

zk
√
h− z4dz =

1 + (−1)k

4
B

(
k + 1

4
,
3

2

)
h

3+k
4 ,

where k = 0, 1, 2, ... and B(α, β) is the Beta-function for α > 0, β > 0, that is

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt =
1

α
+

+∞∑
n=1

(−1)n(β − 1)(β − 2)...(β − n)

n!(α+ n)
.

Let z = h
1
4 s, where s ∈ [−1, 1]. Then

Ek(h) = h
3+k
4

∫ 1

−1

sk
√
1− s4ds = h

3+k
4

∫ 1

0

[1 + (−1)k]sk
√
1− s4ds.

Using the mapping s4 = w, we further obtain

Ek(h) =
1 + (−1)k

4
h

3+k
4

∫ 1

0

w
k−3
4 (1− w)

1
2 dw =

1 + (−1)k

4
B

(
k + 1

4
,
3

2

)
h

3+k
4 .

It is obvious that Ek(h) ≡ 0 when k is odd. We get the elliptic integrals for k = 0, 2, 4, 6 as follows :

E0 =
1

2
B

(
1

4
,
3

2

)
h

3
4 , E2 =

1

2
B

(
3

4
,
3

2

)
h

5
4 , E4 =

1

2
B

(
5

4
,
3

2

)
h

7
4 , E6 =

1

2
B

(
7

4
,
3

2

)
h

9
4 .

Substituting the above terms into (12), the result follows.

Proposition 3.2. There exists some values (a, b, c, ε) for which the system (Hε) can have 3 limit
cycles near the center L0 = {(0, 0)}.

Proof. It is easily seen that the set of equations {b0(δ) = b1(δ) = b2(δ) = 0} has a unique solution at
δ0 = (a, b, c) = (0, 0, 0). By substituting this into b3(δ) and c0(δ) we find that b3(δ0) = 21.47067301 >
0, c0(δ0) = 0.01549000622 > 0. Hence, for h1 = 0 + ε1, h2 = 1

140 − ε2 with ε1 and ε2 positive and
very small, we have that

I(h1, δ0) = b3(δ0)h
9
4
1 +O(h

11
4
1 ) > 0,

I(h2, δ0) = c0(δ0) + o(1) > 0, as h2 −→ hs,

1− sgn(I(h1, δ0)I(h2, δ0))

2
= 0.

In addition, one can easily verify that

rank
∂(b0(δ), b1(δ), b2(δ))

∂(a, b, c)
(δ0) = 3.

Therefore, according to Theorem 2.6, there exists some (a, b, c, ε) near (0, 0, 0, 0) such that system
(Hε) has 3 limit cycles near the center L0.

Proposition 3.3. There exists some values (a, b, c, ε) for which the system (Hε) can have 3 limit
cycles near the saddle loop L 1

140
.
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Proof. It is easily seen that the set of equations {c0(δ) = c1(δ) = c2(δ) = 0} has a unique solution
at δ0 = (a, b, c) = (−0.6752733748, 2.012910062,−2.337636687). By substituting this into b0(δ) and
c3(δ) we find that b0(δ0) = −4.721615076 > 0, c3(δ0) = −23.370180 < 0. Hence, for h1 = 0 + ε1,
h2 = 1

140 − ε2 with ε1 and ε2 positive and very small, we have that

I(h1, δ0) = b0(δ0)h
3
4
1 +O(h

5
4
1 ) < 0,

I(h2, δ0) = c3(δ0)|h2 − hs|+O(|h2 − hs|
5
4 ) < 0,

1− sgn(I(h1, δ0)I(h2, δ0))

2
= 0.

Moreover, one can easily check that

rank
∂(c0(δ), c1(δ), c2(δ))

∂(a, b, c)
(δ0) = 3.

Therefore, on account of Theorem 2.6, there exists some (a, b, c, ε) near

(−0.6752733748, 2.012910062,−2.337636687, 0)

such that system (Hε) has 3 limit cycles near the saddle loop L 1
140

.

Proposition 3.4. There exists some values (a, b, c, ε) for which the system (Hε) can have 4 limit
cycles, from which one limit cycle is near the nilpotent center L0, two limit cycles are near the saddle
loop L 1

140
and the fourth limit cycle lies between the center L0 and the homoclinic loop L 1

140
.

Proof. It is easily seen that the set of equations {c0(δ) = c1(δ) = b0(δ) = 0} has a unique solution
at δ0 = (a, b, c) = (0, 0.04840055616,−1.048400556). By substituting this into b1(δ) and c2(δ) we
find that b1(δ0) = 0.3340261655 > 0, c2(δ0) = −.9515994436

√
2 < 0. Hence, for h1 = 0 + ε1,

h2 = 1
140 − ε2 with ε1 and ε2 positive and very small, we have

I(h1, δ0) = b1(δ0)h
5
4
1 +O(h

7
4
1 ) > 0,

I(h2, δ0) = c2(δ0)(h2 − hs) ln |h2 − hs|+O(|h2 − hs|) < 0,

1− sgn(I(h1, δ0)I(h2, δ0))

2
= 1.

On top of that, it is easily seen that

rank
∂(c0(δ), c1(δ), b0(δ))

∂(a, b, c)
(δ0) = 3.

Therefore, due to Theorem 2.6, there exists some (a, b, c, ε) near (0, 0.04840055616,−1.048400556, 0)
such that system (Hε) has 4 limit cycles, from which one limit cycle is near the nilpotent center L0,
two limit cycles are near the saddle loop L 1

140
and the fourth limit cycle lies between the center L0

and the homoclinic loop L 1
140

.

Proposition 3.5. There exists some values (a, b, c, ε) for which the system (Hε) can have 4 limit
cycles, from which one limit cycle is near the homoclinic loop L 1

140
, two limit cycles are near the

nilpotent center L0 and the last limit cycle lies between the center L0 and the homoclinic loop L 1
140

.

Proof. It is easily seen that the set of equations {b0(δ) = b1(δ) = c0(δ) = 0} has a unique solution
at δ0 = (a, b, c) = (0, 0, 0.05455601370). By substituting this into b2(δ) and c1(δ) we find that

9



b2(δ0) = 0.6539383216 > 0, c1(δ0) = −3.686808753 < 0. Hence, for h1 = 0 + ε1, h2 = 1
140 − ε2 with

ε1 and ε2 positive and very small, we get

I(h1, δ0) = b2(δ0)h
7
4
1 +O(h

9
4
1 ) > 0,

I(h2, δ0) = c1(δ0)|h2 − hs|
3
4 +O(|h2 − hs| ln |h2 − hs|) < 0,

1− sgn(I(h1, δ0)I(h2, δ0))

2
= 1.

Moreover, one can easily prove that

rank
∂(b0(δ), b1(δ), c0(δ))

∂(a, b, c)
(δ0) = 3.

Therefore, by using Theorem 2.6, there exists some (a, b, c, ε) near (0, 0, 0.05455601370, 0) such that
system (Hε) has 4 limit cycles, from which one limit cycle is near the homoclinic loop L 1

140
, two

limit cycles are near the nilpotent center L0 and the last limit cycle lies between the center L0 and
the homoclinic loop L 1

140
.

For the distribution of the limit cycles obtained above, see Figure 2.

(a) (b) (c) (d)

Figure 2: The distribution of the limit cycles bifurcated from the period annulus of system (H0).

4 The number of zeros of the Abelian integral I(h)

In this section, we will study the maximum number of limit cycles that can bifurcate from the period
annulus of system (H0) for 0 < ε ≪ 1. We will use an algebraic criterion developed in [Grau et
al., 2011] to study the Abelian integral I(h) of system (Hε). In fact, it will be shown that the base
functions {I0(h), I1(h), I3(h), I5(h)} in the Abelian integral I(h) form a Chebyshev system with
accuracy 1. Hence, the number of isolated zeros of I(h) in the open interval (0, 1

140 ) is at most four.
We notice that the Abelian integrals Ii(h) of (4) take the form Ii(h) =

∮
γh
xiy2s−1dx, i = 0, 1, 3, 5

with s = 1 and the Hamiltonian function H(x, y) in (3) takes the form H(x, y) = A(x) + B(x)y2m

where A(x) = −1
7 x

7+ 1
2 x

6− 3
5 x

5+ 1
4 x

4, B(x) = 1
2 and m = 1. The projection of the period annulus

on the x-axis is (xl, 1) and xA
′(x) > 0 for all x ∈ (xl, 1) \ {0}, here

xl = − 1

30

(
350 + 105

√
15
)2/3 − 35 + 5

3
√

350 + 105
√
15

3
√

350 + 105
√
15

∈
(
− 351

1024
,−175

512

)
. (13)

Therefore, there exists an involution function z(x) with xl < z(x) < 0 such that A(x) = A(z(x)) for
all 0 < x < 1. Recall that a C1 mapping z : I −→ I is an involution when z2 = i.d. and z ̸= i.d.
Note that an involution is a diffeomorphism with a unique fixed point.
Now we restate Theorem A of [Mañosas & Villadelprat, 2011] and Lemma 4.1 of [Grau et al., 2011]
below, which are essential in our analysis on the number of isolated zeros of I(h).

Lemma 4.1. Consider the Abelian integrals

Ii(h) =

∮
Lh

fi(x) y
2s−1dx, i = 0, 1, ..., n− 1,

10



where Lh for each h ∈ (0, h0), is the level curve {A(x) +B(x)y2m = h}, and define

li(x) :=
fi(x)

A′(x)
− fi(z(x))

A′(z(x))
.

Now suppose the followig conditions, are satisfied:
(i) W [l0, ..., li] is non-vanishing on (0, xr) for i = 0, 1, ..., n− 2.
(ii) W [l0, ..., ln−1] has k zeros on (0, xr) counted with multiplicities, and
(iii) s > m(n+ k − 2).
Then any nontrivial linear combination of I0, I1, ..., In−1 has at most n + k − 1 zeros on (0, h0)
counted with multiplicities. Here, the notationW [f0, · · · , fn] stands for the Wronskians of the smooth
functions (f0, · · · , fn).

Usually condition (iii) in Lemma 4.1 does not hold, and hence we can not apply Lemma 4.1
directly. To overcome this problem, we can use the next result (see [Grau et al., 2011], Lamma 4.1)
to increase the power of y in the differential 1-form associated to the integral Ii(h) defined above.

Lemma 4.2. Let Lh be an oval with the level curve A(x) +B(x)y2 = h and consider a function F
such that F

A′ is analytic at x = 0. Than, for any k ∈ N,∮
Lh

F (x)yk−2dx =

∮
Lh

G(x)ykdx

where G(x) = 2
k (

BF
A′ )

′
(x)− (B

′
F

A′ )(x).

But in our case, m = 1, n = 4 and s = 1, therefore the condition s > m(n+k−2) is not fulfilled
even for k = 1. To overcome this problem, we will use Lemma 4.2 and will obtain new Abelian
integrals for which the corresponding s is large enough to verify the inequality. Here, the power s
has to be promoted to three so that the condition s > n+ k − 2 holds.
On the oval Lh the following expression holds

Ii(h) =
1

h

∮
Lh

(
A(x) +

y2

2

)
xiydx (14)

=
1

2h

(∮
Lh

2xiA(x)ydx+

∮
Lh

xiy3dx

)
, i = 0, 1, 3, 5.

Now we apply Lemma 4.2 with k = 3 and F (x) = 2xiA(x) to the first integral above to get∮
Lh

2xiA(x)ydx =

∮
Lh

Gi(x)y
3dx,

where Gi(x) =
d

3dx (
2xiA(x)
A′(x) ) = − gi(x)

210(x−1)4 , with

gi(x) = −35xi (i+ 1) + 7xi+1 (14 + 17 i)− 14xi+2 (9 + 11 i) + 10xi+3 (8 + 9 i)− 20xi+4 (i+ 1) .

By (14) we obtain that

Ii(h) =
1

2h

∮
Lh

(
xi +Gi(x)

)
y3dx =

1

4h2

∮
Lh

(2A(x) + y2)(xi +Gi(x))y
3dx (15)

=
1

4h2

(∮
Lh

2(xi +Gi(x))A(x)y
3dx+

∮
Lh

(xi +Gi(x))y
5dx

)
.
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Again we apply Lemma 4.2 with k = 5 and F (x) = 2(xi +Gi(x))A(x) to the first integral above to
get ∮

Lh

2(xi +Gi(x))A(x)y
3dx =

∮
Lh

Hi(x)y
5dx,

where Hi(x) =
d

5dx (
2(xi+Gi(x))A(x)

A′(x) ) = − hi(x)
73500(x−1)8 , with

hi(x) = −1225xi (i+ 7) (i+ 1) + 245xi+1
(
226 + 281 i+ 34 i2

)
− 49xi+2

(
3394 + 4405 i+ 509 i2

)
+ 28xi+3

(
10676 + 14027 i+ 1534 i2

)
− 14xi+4

(
24857 + 32289 i+ 3324 i2

)
+ 70xi+5

(
3806 + 4801 i+ 464 i2

)
− 20xi+6

(
6503 + 7864 i+ 713 i2

)
+ 100xi+7

(
368 + 423 i+ 36 i2

)
− 200xi+8 (2 i+ 23) (i+ 1) .

Now we can write

Ii(h) =
1

4h2

(∮
Lh

(xi +Gi(x) +Hi(x))y
5dx

)
=

1

8h3

(∮
Lh

(2A(x) + y2)(xi +Gi(x) +Hi(x))y
5dx

)
=

1

8h3

(∮
Lh

2(xi +Gi(x) +Hi(x))A(x)y
5dx+

∮
Lh

(xi +Gi(x) +Hi(x))y
7dx

)
. (16)

Again we will apply Lemma 4.2 with k = 7 and F (x) = 2(xi+Gi(x)+Hi(x))A(x) to the first integral
above to get ∮

Lh

2(xi +Gi(x) +Hi(x))A(x)y
5dx =

∮
Lh

Ki(x)y
7dx,

where Ki(x) =
d

7dx (
2(xi+Gi(x)+Hi(x))A(x)

A′(x) ) = ki(x)
36015000(x−1)12 , with

ki(x) = 42875xi (i+ 11) (i+ 7) (i+ 1)− 25725xi+1
(
1310 + 1703 i+ 333 i2 + 17 i3

)
+ 1715xi+2

(
95058 + 127822 i+ 24283 i2 + 1197 i3

)
− 49xi+3

(
10021984 + 13732156 i+ 2523089 i2 + 119681 i3

)
+ 98xi+4

(
10417314 + 14366612 i+ 2544727 i2 + 115869 i3

)
− 294xi+5

(
5227940 + 7183236 i+ 1223831 i2 + 53403 i3

)
+ 56xi+6

(
30586815 + 41522047 i+ 6794274 i2 + 283844 i3

)
− 140xi+7

(
10141200 + 13509256 i+ 2121113 i2 + 84801 i3

)
+ 420xi+8

(
2063665 + 2682949 i+ 404038 i2 + 15458 i3

)
− 100xi+9

(
3793174 + 4792425 i+ 692174 i2 + 25350 i3

)
+ 200xi+10

(
563877 + 690095 i+ 95614 i2 + 3354 i3

)
− 1000xi+11

(
20424 + 24155 i+ 3212 i2 + 108 i3

)
+ 2000xi+12 (2 i+ 23) (2 i+ 37) (i+ 1) .

Finally we conclude that

8h3Ii(h) =

∮
Lh

fi(x)y
7dx ≡ Ĩi(h), (17)

where fi(x) = xi + Gi(x) + Hi(x) + Ki(x). It is clear that {I0, I1, I3, I5} is an extended complete
Chebyshev system with accuracy 1 on (0, 1

140 ) if and only if {Ĩ0, Ĩ1, Ĩ3, Ĩ5} is as well. Now we can

12



apply Lemma 4.1, since s = 4 and hence the condition s > m(n + k − 2) holds when k = 1. Thus,
by setting

ℓi(x) :=

(
fi
A′

)
(x)−

(
fi
A′

)
(z(x)),

it is needed to check that {ℓ0, ℓ1, ℓ3, ℓ5} is a complete Chebyshev system of accuracy 1 on x ∈ (0, 1).
As a matter of fact, by proving the next lemma, it will be shown that {ℓ0, ℓ1, ℓ3, ℓ5} is an extended
complete Chebyshev system with accuracy 1.

Lemma 4.3. It holds that

(i) W [ℓ0](x) ̸= 0 for all x ∈ (0, 1);

(ii) W [ℓ0, ℓ1](x) ̸= 0 for all x ∈ (0, 1);

(iii) W [ℓ0, ℓ1, ℓ3](x) ̸= 0 for all x ∈ (0, 1);

(iv) W [ℓ0, ℓ1, ℓ3, ℓ5](x) ̸= 0 for all x ∈ (0, 1)\{x∗},

where x∗ ∈ (0, 1) will be introduced in the proof.

Proof. By an easy computation, it is easily seen that the involution z = z(x) for x ∈ (0, 1) satisfies

A(x)−A(z) = − 1

140
(x− z)q(x, z) = 0,

where

q(x, z) = 20x6 − 70x5 + 20 zx5 + 84x4 − 70 zx4 + 20 z2x4 − 35x3 + 84 zx3 − 70 z2x3

+ 20x3z3 − 35 zx2 + 84 z2x2 − 70x2z3 + 20x2z4 − 35 z2x+ 84xz3 − 70xz4

+ 20xz5 − 35 z3 + 84 z4 − 70 z5 + 20 z6.

By using Maple 18, it is founded that

W [ℓ0](x) =
(x− z)W0(x, z)

12005000 (x− 1)
15
x3 (z − 1)

15
z3
,

W [ℓ0, ℓ1](x) = − (x− z)3W1(x, z)

144120025000000z6 (z − 1)
30
x6 (x− 1)

30
W01(x, z)

,

W [ℓ0, ℓ1, ℓ3](x) = − 3(x− z)6W2(x, z)

865080450062500000000z8 (z − 1)
45
x8 (x− 1)

45
W 3

01(x, z)
,

W [ℓ0, ℓ1, ℓ3, ℓ5](x) =
3(x− z)10W3(x, z)

5192645401500156250000000000 (z − 1)
59
z10 (x− 1)

59
x10W 6

01(x, z)
,

where Wi(x, z), i = 0, 1, 2 are polynomials with long expressions in (x, z) and

W01(x, z) = 20x5 − 70x4 + 84x3 − 35x2 − 105 z2 + 336 z3 − 350 z4 + 120 z5 + 40 zx4 − 140 zx3

+ 60 z2x3 + 168 zx2 − 210 z2x2 + 80x2z3 − 70 zx+ 252 z2x− 280xz3 + 100xz4.

The resultant with respect to z between W01(x, z) and q(x, z) is

p01(x) = 53782400000x6
(
20x3 − 70x2 + 84x− 35

)3 (
20x3 + 10x2 + 4x+ 1

)3
(x− 1)

6
.

By using Maple 18, it is easy to see that p01(x) does not have any zeros in (0, 1). This implies that
W [ℓ0, ℓ1], W [ℓ0, ℓ1, ℓ3] and W [ℓ0, ℓ1, ℓ3, ℓ5] are well defined in the domain xl < z < 0 < x < 1.
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In order to determine if these four Wronskians have zeros on (0, 1), we shall rely on the symbolic
computations by Maple 18 under Linux to compute the resultant betweenWi(x, z), i = 0, 1, 2, 3 and
q(x, z) with respect to z, and then we will apply Sturm’s Theorem to assert nonexistence of zeros of
pi(x), i = 0, 1, 2, 3, in (0, 1) where pi(x) are polynomials of high degree in x that will be described
below.

Case (i). The resultant with respect to z between q(x, z) andW0(x, z) isR0(x) = x6 (x− 1)
42
p0(x),

where p0(x) is a polynomial of degree 126 in x. By applying Sturm’s Theorem we get that p0(x) ̸= 0
for all x ∈ (0, 1). Thus, W0(x, z) = 0 and q(x, z) = 0 have no common roots. This fact implies that
W [ℓ0](x) ̸= 0 for all x ∈ (0, 1).

Case (ii). The resultant with respect to z between q(x, z) andW1(x, z) isR1(x) = x16 (x− 1)
88
p1(x),

where p1(x) is a polynomial of degree 268 in x. By applying Sturm’s Theorem we get that p1(x) ̸= 0
for all x ∈ (0, 1). Thus, W1(x, z) = 0 and q(x, z) = 0 have no common roots. This fact implies that
W [ℓ0, ℓ1](x) ̸= 0 for all x ∈ (0, 1).

Case (iii). The resultant with respect to z between q(x, z) andW2(x, z) isR2(x) = x28 (x− 1)
138

p2(x),
where p2(x) is a polynomial of degree 422 in x. By applying Sturm’s Theorem we see that p2(x)
has a unique zero in the open interval (0, 1). Therefore the method used in cases (i) and (ii) fails
to work in this case. In order to make sure if W2(x, z) and q(x, z) have common roots, we use the
direct program with Maple 18 (under Linux) to find all the intervals in which all the common roots
of W2(x, z) and q(x, z) on the whole plane may occur.

> with(RegularChains):

> with(ChainTools):

> with(SemiAlgebraicSetTools):

> R := PolynomialRing([x,z]):

> sys := [w_2(x, z), q(x, z)]:

> dec := Triangularize(sys, R);

[regular_chain, regular_chain, regular_chain]

> L := map(Equations, dec, R);

[[k1(x, z), k2(z)], [x− 1, z − 1], [x, z]]

where k1(x, z) = k11(z)x + k12(z), k11 is a polynomial in z of degree 421, k12 is a polynomial in z
of degree 421 and k2 is a polynomial in z of degree 422. It is obvious that the second regular chain
and the third one do not have roots satisfying xl < z < 0 < x < 1 where xl ≈ −0.3423840949, and
the first regular chain [k1(x, z), k2(z)] is square-free and zero-dimensional (because the number of
variables equals the number of polynomials). L[1][1] and L[1][2] represent k1 and k2 in Maple and
they have two and one variables, respectively. Therefore we need to change their order in the first
regular chain.

> C := Chain([L[1][2], L[1][1]], Empty(R), R);

regular_chain

> RL := RealRootIsolate(C, R, ’abserr’ = 1/10^5);

[box, box, box, box, box, box]

>evalf(map(BoxValues, RL, R));

[[x = [1.332499319, 1.332499319], z = [-.2175672857, -.2175672857]],

[x = [1.188453671, 1.188453671], z = [-.3372832568, -.3372832568]],

[x = [-.2175672857, -.2175672856], z = [1.332499319, 1.332499319]],

[x = [.5846840049, .5846840050], z = [1.267152074, 1.267152074]],

[x = [-.3372832568, -.3372832568], z = [1.188453671, 1.188453671]],

[x = [1.267152074, 1.267152074], z = [.5846840050, .5846840050]]].

From the result of the program, we see that there are 6 pairs of common roots of W2(x, z) and q(x, z)
in the above mentioned intervals, but no pairs satisfy xl < z < 0 < x < 1. This fact implies that
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W [ℓ0, ℓ1, ℓ3](x) ̸= 0 for all x ∈ (0, 1).

Case (iv). The resultant with respect to z between q(x, z) andW3(x, z) is R3(x) = x44 (x− 1)
188

p3(x),
where p3(x) is a polynomial of degree 590 in x. By applying Sturm’s Theorem we find that p3(x)
has a unique zero in the interval (0, 1). In order to make sure if W3(x, z) and q(x, z) have common
roots, we use the direct program with Maple 18 as before to discover all the intervals in which all the
common roots of W3(x, z) and q(x, z) on the whole plane exist.

> with(RegularChains):

> with(ChainTools):

> with(SemiAlgebraicSetTools):

> R := PolynomialRing([x,z]):

> sys := [w_3(x, z), q(x, z)]:

> dec := Triangularize(sys, R);

[regular_chain, regular_chain, regular_chain]

> L := map(Equations, dec, R);

[[r1(x, z), r2(z)], [x− 1, z − 1], [x, z]]

where r1(x, z) = r11(z)x + r12(z), r11 is a polynomial in z of degree 589, r12 is a polynomial in z
of degree 589 and r2 is a polynomial in z of degree 590. It is obvious that the second regular chain
and the third one do not have roots satisfying xl < z < 0 < x < 1 where xl ≈ −.3423840949, and
the first regular chain [r1(x, z), r2(z)] is square-free and zero-dimensional (because the number of
variables equals the number of polynomials). L[1][1] and L[1][2] represent r1 and r2 in Maple and
they have two and one variables, respectively. Therefore we need to change their order in the first
regular chain.

> C := Chain([L[1][2], L[1][1]], Empty(R), R);

regular_chain

> RL := RealRootIsolate(C, R, ’abserr’ = 1/10^5);

[box, box, box, box, box, box]

>evalf(map(BoxValues, RL, R));

[[x = [1.342226771, 1.342226771], z = [-0.8416542251, -0.8416542251]],

[x = [.7968688606, .7968688607], z = [-.3397589321, -.3397589321]],

[x = [-0.8416542254, -0.8416542248], z = [1.342226771, 1.342226771]],

[x = [-.3397589321, -.3397589321], z = [.7968688606, .7968688606]]].

As a result, we see that there are 4 pairs of common roots of W3(x, z) and q(x, z) in the above
mentioned intervals, but exactly one pair satisfies xl < z < 0 < x < 1. Therefore, there is a unique
x∗ = 0.796868861 ∈ (0, 1) such that W [ℓ0, ℓ1, ℓ3, ℓ5](x

∗) = 0. Hence the proof is complete.

Corollary 4.4. The exact upper bound for the maximal number of isolated zeros of I(h, δ), defined
in (4), is 4 on the open interval (0, 1

140 ). Hence, the Liénard system (Hε) can have at most 4 limit
cycles bifurcating from the corresponding period annulus.

Proof. It follows from Lemma 4.1 and Lemma 4.3 that {I0(h), I1(h), I3(h), I5(h)} is a Chebyshev
system with accuracy 1 on (0, 1

140 ). In consequence, there are at most 4 zeros of I(h) on (0, 1
140 ).

Therefore, there are at most 4 limit cycles of system (Hε) bifurcated from the period annulus {Lh}h
of system (H0).
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