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Abstract

In this work, we study the Abelian integral I(h) corresponding to the following Liénard

system,
T=y, Y= xs(x — 1)3 +e(a+ bx + cx® + 555)y,

where 0 < ¢ < 1, a,b and ¢ are real bounded parameters. By using the expansion of I(h)
and a new algebraic criterion developed in [Grau et al., 2011], it will be shown that the sharp
upper bound of the maximal number of isolated zeros of I(h) is 4. Hence, the above system can
have at most 4 limit cycles bifurcating from the corresponding period annulus. Moreover, the
configuration (distribution) of the limit cycles is also determined. The results obtained are new
for this kind of Liénard system. MSC: 34C07; 34C08; 37G15; 34M50

Keywords: Melnikov function, Abelian integrals, Limit cycles, Liénard system, nilpotent center and saddle.

1 Introduction and statement of the results

The second part of the famous Hilbert 16th problem is to find an upper bound to the maximal
number and to determine configurations of limit cycles of planar polynomial differential systems
defined by
dx dy
o = Pn ) ) o = n\+4, )
pm e I CY)
for all possible P, and @Q,, where P, and @, are real polynomials in x, y of degree n. The maximal
number of limit cycles is usually denoted by H(n), and it is so called the Hilbert number.
In general, determination of H(n) is a very difficult problem. Keeping this in mind, Arnold
proposed in [Arnold, 1990] ten problems, that it is named the 7th problem as follows:
Consider a deformation of a planar Hamiltonian system as follows:

dH + e(fdx + gdy) = 0, (1)

where f and g are polynomials in z, y of degrees at most n, € > 0 is a small parameter. Abelian
integrals related to deformation (1) are defined by

I(h) = s [z, y)dz + g(z, y)dy,
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where
Ly = {(z,y) € R? : H(z,y) =h, by <h < ha}.

The Arnold 7th problem (the first part): How many isolated zeros the Abelian integrals I(h)
would have in the domain of definition if f, ¢ and H are polynomials with known degrees?

The first part of the above-mentioned problem is called the weakened (infinitesimal or tangential)
Hilbert 16th problem.

This article studies the number and distribution of limit cycles of a polynomial Liénard system
with a nilpotent center and a nilpotent saddle connection. The problem considered here is related
to the still open Hilbert 16th problem.

Now let us clarify the results of this article. Consider a perturbed planar Hamiltonian system of
the form

& Hy +ep(x,y,¢,96) (2)
y = _Haf +€Q(‘ray7€75)
where p, ¢ and H are C* functions, ¢ is a small positive parameter and J is a vector parameter

where § € D C R™ and D is a compact set. Note that (2)|—¢) is a Hamiltonian system.
Now suppose (2)](-=0) has a family of periodic orbits

Ly = {(z,y) € R® : H(z,y) =h, h1 <h < ha}

continuously depending on the parameter h. Associated to periodic orbits Lj, we can define the
function

M(h,d) ::j{ gdx — pdy|.—o,
Lh

which is called the first order Melnikov function or Abelian integral [Ilyashenko, 2002], and it is very
important in the study of bifurcations of limit cycles in the family (2).
In this work, the following Newtonian system will be considered

T = Y, y = xg(x - 1)3a (HO)
with the Hamiltonian function
1y 12 1 g 3 5 1 4
Hy)= s~ sam+ 1t Dar g 1t 0

which has a nilpotent saddle at S(1,0), a nilpotent center at O(0,0) and a saddle connection Lﬁ.
All orbits Ly, inside Lﬁlo7 for h € (0, ﬁ), are closed.
We will study a perturbation of (Hy) in the form

T =y,
g = 2@ —1)°+e(a+br+cad +2°)y, (H:)

and especially, the related Abelian integral:
I(h,d) = 7{ (a+ bz + cz® + 2°)ydx = aly(h) + bIy(h) + cIs(h) + I5(h), (4)
Lp

where I;(h) = th xiydx (i = 0,1,3,5) and L, is oriented clockwise. Here 0 < ¢ < 1 and & = (a, b, c)
belongs to any compact subset of R3.

Our main result is the following.



Theorem 1.1. The ezact upper bound for the maximal number of isolated zeros of I(h,d), defined
in (4), is 4 on the open interval (0, ﬁlo). Hence, the Liénard system (H:) can have at most 4 limit
cycles bifurcating from the corresponding period annulus. Moreover, the distribution of the limit
cycles of system (H.) is illustrated in Figure 2.

The main theorem will be deduced by proving four propositions in Section 3 and one lemma in
Section 4. For more details, see the Propositions 3.2-3.5 in Section 3, Lemma 4.3 in Section 4, and
finally Corollary 4.4 at the end of the present paper. Before that, we give some preliminaries which
are used to find the number of limit cycles bifurcating from the period annulus {Lj}; in Section 2.

2 Preliminary

In this section, some definitions will be provided and some lemmas will be recalled which will be
used in the proof of the main results.

Definition 2.1. Let fy, f1,..., fn_1 be real analytic functions on some open interval I of R. Then

(i) The set {fo, f1, ..., fn—1} is called a Chebyshev space on I if any nontrivial linear combination

Oéofo(l‘) + Oélfl(ﬂi) + ...+ an_lfn_l(a:)
has at most n — 1 isolated zeros on I.

(ii) The set {fo, f1, ..., fe—1} is called a complete Chebyshev space on I if for all k = 1,2, ..., n, any
nontrivial linear combination of (fo, f1, ..., fk—1) as

040f0($) + alfl(x) + ...+ Oék71fk,1((£)
has at most k — 1 isolated zeros on I.

(iii) The set {fo, f1,-.., fe—1} is called an extended complete Chebyshev space on I if for all k =
1,2,...,n, any nontrivial linear combination

aofo(x) +arfi(z) + ... + -1 fe-1(x)
has at most k — 1 isolated zeros on I counting multiplicity.

Remark 2.2. Recall that a real vector space V of real analytic functions defined on some real
interval T is considered to be Chebyshev, provided that each f in V has at most dimV — 1 isolated
zeros (counted with multiplicity) on I, and Chebyshev with accuracy m, when each f in V has at
most dimV + m — 1 isolated zeros at hand.

Definition 2.3. Let fy, f1,..., f_1 be real analytic functions on some open interval I of R. The
Wronskian of (fo, f1,..., fk—1) at z € L is

fO fl fkfl
fo i o fia

W[anflv"'vfkfl](x): : . : :
fék.—l) fl(k.—l) ] ) Igli—ll)

The following result concerning an extended complete Chebyshev space is well known.

Lemma 2.4. The set {fo, f1,.., fn—1} s an extended complete Chebyshev space on 1 if and only if,
for each k =1,2,...,n,

Wlifo, f1s s fo—1](x) 0 forall z €L



Figure 1: The level sets of (Hy).

Suppose (2)|.=o has a nilpotent center O(0, 0), a homoclinic loop Ly passing through a nilpotent
saddle S(zs,ys) and surrounding O(0,0). We suppose that the periodic orbits are oriented clockwise
and closed curves inside the homoclinc loop Lj,, are parameterized by the Hamiltonian value h such
that H(xs,ys) = hs corresponds to a homoclinc loop Lj,_ and H(0,0) = 0 corresponds to a nilpotent
center (Figure 1).

Correspondingly, we have

I(h,8) = j{ qdx — pdy, h € (0, hs).
Ly

By using the notations of [Jiang & Han, 2008; Han et al., 2008], when O(0,0) is a nilpotent
center we can suppose

y2

H(z,y) = o5 haoz* + Z hijz'y’,  hay >0, (5)

i+j>4

and

pla,y.8) = > ag(®)a'y’, qlz,y.0)= Y bi;(6)z"y.
i+j>0 i+§>0
For the expansion of I(h,d) near the nilpotent center O(0,0) we have from [Jiang & Han, 2008] that
I(h,8) = B3 bp(8)h*, as h— 0% (6)

k>0

Under (5), the coefficients b;, j =0,1,2,...,n, can be obtained by following the method in [Jiang &
Han, 2008].
Now let the outer boundary of the family {Lj}ne(0,n,) be a homoclinic loop given by

Ls:= Ly, ={(z,y) € R?: H(z,y) = hs},

that is homoclinic (connected) to a nilpotent saddle at (zs,ys). Then by [Zang et al., 2008], it is
possible to write

H(z,y) = hs — l(x —z)t 4 Z hio(z — x)" + (y — ¥s)* Z hij(z — 26) (y — ys ). (7)

4 5 =
i>5 i+j5>0



Also, we can write
p,y,6) = D ay(0) (@ —z) (y—vs), ala,y,8) = D bi(0)(w—2s) (y — ys).
i+5>0 i+j>0
The following asymptotic expansion of the Abelian integral I(h,§) is obtained in [Zang et al., 2008]

near the nilpotent saddle loop.

Lemma 2.5. ([Zang et al., 2008]) Let (7) hold. Then for system (2), near the critical value h = hs
(0 < hy — h < 1) corresponding to the nilpotent saddle loop L through the point (xs,ys) as a
nilpotent saddle, we have

I(h,6) = co+cilh— hs\% + ca(h — hs)In|h — hg| + c3|h — hg| + calh — hsﬁ + cslh — hs|§
+ eo(h—ho)* I |h—ho| + O((h —hs)?), as h—h, (8)
with
4v2do 0 A 2d
co = I(hs, ) :f i —pdy, o = V2hooRor V2o
L. 3 5
4+/2ds o A
CBZf (pm+qy_a10_b01)dt fO']" C1:C2:O7 042_%,
L
_ 8v2(do,2 — 2d1,0)Ao2 _ V2(4ds o — di o)
= 21 6T T g

where Ag o > 0 and Ag o < 0 are real constants and d; o (i = 0,1,2,4,5), d; 2 (i = 0,1), are some
coefficients depending on h;j, a; ; and b; ; (0 <1i,5 <7). The coefficients ca, c3, cs5,ce are called local
coefficients of system (2) at the nilpotent saddle.

The next theorem follows by modifying the proof of part (ii) of Theorem 1.5 in [Sun et al., 2011].

Theorem 2.6. Consider the expansions (6) and (8) of I(h,d) for system (2). If there exists some
do € R™ such that

and

a(CO7 Clyeeny Ck1—17b07b1»-~7bk2—1)

(01, s 0m)

175g’ﬂ(]\1(h1,50)M(}l2,

rank (00) = k1 + ko,

then we would have ki + ko + %) Timit cycles for some (g,0) near (0,dp), from

which k1 limit cycles are near the homoclinic loop Lﬁlo, ko limit cycles are near the center O(0,0) and

lfsgn(M(hl,éo)M(hg,
2

%)) imit cycle are surrounding the center O(0,0), where hy = hs—e1, hg = 0+e9
with €1 and €4 are positive and very small.

3 Asymptotic expansions of the Melnikov function I(h,d)

In this section we will apply Lemma 2.5 to system (H.) and will obtain the asymptotic expansion

of the Abelian integral I(h,d) in (4) as h — (335) - It is clear that on the loop L 1 we have that

1
y*(z) = s V1400 23 + 70022 + 280 = + 70 (x — 1)2.



By applying the formula for ¢¢(d) in Lemma 2.5, we have

1

]{ qdx — pdy = 2 / (a+ bz + ca® + 25yt (z)dx
L, @1=—0.3423840948

Co

140

= —18.28103849a — 6.470189824 b — 0.2839284832 c 4+ 0.01549000622.

To compute the expressions for the local coefficients ¢, ¢ described in Lemma 2.5, we must translate
the saddle point S = (1,0) to the origin. To this end, we make the transformations X = 1—z,Y =y
and T'= —t and still denote X,Y and T by z,y and ¢, respectively. Then system (H.) becomes
) = —2’(a—1)° +eq(z,y),
where
gz, y) =(a+c+b+1—(b+3c+5)z+ (10+3¢c)2? — (c+ 10) 2> + 52* — 25)y.
The Hamiltonian function of system (9)|.—¢ is defined as
1
5

1 1 3 1
H(m,y):§y2—1$4+3x —53064—?337.

Thus, by using Lemma 2.5, it is founded that

Aps = 1.311028778V/2,
d070 = a+b+c+1,
6 1. 9 19
d170 = g(l‘f’gb—gc_g,
1 = —3.496076742a — 3.496076742b — 3.496076742 — 3.496076742 ¢,
1
o E\f2(6a+b—19—9c).

If ¢, =c3 =0 and hence a =4+ 2c and b = —3 ¢ — 5, then we would have
1 3 5
+ bx + ca® +
g = 7{ (pz+Qy)dt:140/ e e 2“) dz
L —0.3423840048 (z — 1)° /1400 23 + 700 22 + 280 = + 70
—1773.900826 ¢ — 4170.105830.

For the expansion of the Melnikov function (4) of system (Hj) near the nilpotent center Ly = {(0,0)},
we will prove the next result.

Lemma 3.1. The Abelian integral 1(h,d) given in (4) has the asymptotic expansion
I(h,6) = h% Y be(d)h?, (10)
k>0

near the nilpotent center (0,0), where 0 < h < 1 and § = (a,b,c). Following the method in [Jiang
& Han, 2008], the first coefficients of the above expansion are given by

by = 2B<i,z)a,
12 /33

b, = 25B<4,2>(15b+19a),

b — 2p (53> (10500 ¢ + 28960 b + 36873 a) ,
8757\ 12

b = —+op (7, 3) (52500 + 243500 ¢ + 190343 D) .
31257 \ 12



Proof. Considering the oval Ly for 0 < h < 1, we denote the abscissas of the intersection points of
L, with the negative and positive half x-axis by x;(h) and z,(h), respectively. Thus, z;(h) < 0 <
zr(h) <1 and A(z;(h)) = A(z-(h)) = h, where

1 1 3 1
A = 4 _— 3 — 2—7 - .
(v) == ( =@ +2x 535—1—4)

It can be calculated that
1,4 4 6 38 374 4196 5/4
z.(h) =g (ﬁ):ﬁﬁ+5¢ﬁ+%\/§h + e bt O(h*) > 0,
_1, 4 4 6 38 372 4196 5/4
zi(h) =g (—\/ﬁ):—\/ﬁ\/ﬁ+5f—%\@h + g h O <0
where g(z) = sign(z)+/A(z). Define a new function as

Flaz) = (—sad+oa? - 2aq 1) (z,2) € (R?,0)
gz) = —get+ ot -ty z, (z,z ,0).

The implicit function theorem implies that there exists a smooth function z = (2) for |z| < 1 such
that F'(¢(z),z) = 0. By using Maple 18, it can be deduced that for 0 < |z| < 1,

38 4196 A4 36873
z=1(z) = fz+6/5z+ \f + o5 ? 4375\f +0 (9.
Under the transformation
1 1 3 1\*
_ 4 Rt BT B 1 _ 11
A(z) = 2%, or x( - +233 5m+4) z, (11)

the Abelian integral (4) changes into

zr(h)
I(h,6) = 2\/5/ (a4 bz + ca® + 2°)\/h — A(x)dx

@1 (h)

hi
— 2\/5/ (a+ba+ca® +2°) oy Vh— 249 (2)dz

—+oo
= 2v2)  ar(8)Ex(h), (12)
k=0
where
%
Ey(h) :/ 2PV h— 24z, for k=0,1,2,--,
—h14
and
ap = a'\/ia
2
ap = g(6a+5b),
6
ay = 2—5\/5(15b+19a),
4
as = % (875 ¢ + 4196 a + 3290 b) ,
ay = % V2 (10500 ¢ + 28960 b + 36873 a) ,
= — (32709b + 13650 ¢ + 1750
“ S5 ( * ¢+ 1750),
ag = ——— v/2(52500 + 243500 ¢ + 190343 b) .

3125



Therefore in order to get the asymptotic expansion of I(h,d) near h = 0, it is crucial to compute
the following elliptic integrals

ni 1+ (=1)* 1 :
Ek(h):/ 2V h—2dz = +(4 )B(k+ 3>hsz,

it 4 2

where k =0,1,2,... and B(a, ) is the Beta-function for @ > 0, 8 > 0, that is

1 - - —n
B(a,ﬂ):/o tafl(l ﬁ Lyt — Jrz 1zéﬂ+n2))(ﬂ )

n=1

Let z = his, where s € [—1,1]. Then

Eip(h) = Hk/ k1 —stds=h 4‘/ sF\/1 — sids.
Using the mapping s* = w, we further obtain

14+ (=1 sex [1 kes L 14+ (=1)* 1 3
Ek(h)=+(4)hi’“/0 w'T (1 —w)?dw = +(4 )B(kjlr 2)h+

It is obvious that Ej(h) =0 when k is odd. We get the elliptic integrals for k = 0, 2,4, 6 as follows :

13 33 5 3 7 3
E =B hi, E _lp hi, E,= 1p hi EBi— 1B .
073 (4 ) 279 (4 2) 179 (4’2) 6T (4 2)

Substituting the above terms into (12), the result follows. O

Proposition 3.2. There exists some values (a,b, c,e) for which the system (Hg) can have 8 limit
cycles near the center Lo = {(0,0)}.

Proof. Tt is easily seen that the set of equations {by(6) = b1(0) = b2(d) = 0} has a unique solution at
do = (a,b,c) = (0,0,0). By substituting this into b3(J) and ¢¢(J) we find that bs(dy) = 21.47067301 >
0, co(dp) = 0.01549000622 > 0. Hence, for hy = 0+ e1, hy = — €9 with g1 and &9 positive and
very small, we have that

1
140

I(hy,00) = 53(50)}1 +O0(hy') >0,
I(hg,éo) = 00(50> + O( ) >0, as ho — hsg,

1 — sgn(I(h1,60)I(h2,d0))
2

=0.

In addition, one can easily verify that

9(bo(0), b1(5),b2(9))
d(a,b,c)

rank (do) = 3.

Therefore, according to Theorem 2.6, there exists some (a, b, ¢, e) near (0,0,0,0) such that system
(H.) has 3 limit cycles near the center L. O

Proposition 3.3. There exists some values (a,b, c,e) for which the system (H) can have 8 limit
cycles near the saddle loop Lﬁ



Proof. Tt is easily seen that the set of equations {cy(d) = ¢1(d) = c2(d) = 0} has a unique solution
at 09 = (a,b,c) = (—0.6752733748,2.012910062, —2.337636687). By substituting this into by(d) and
c3(9) we find that bg(dg) = —4.721615076 > 0, c3(dg) = —23.370180 < 0. Hence, for hy = 0 + ¢1,
hy = Tio — €9 with e; and 3 positive and very small, we have that

I(h1,00) = bo(d0)hy + O(h{) <0,
I(ha, 80) = c3(60)|ha — hs| + O(|hg — hy|T) < 0,
1 — Sg’l’L(I(hl, 60)](]12, (5()))

=0.
2

Moreover, one can easily check that

9(co(9), c1(9), ¢2(9))

k
ran d(a,b,c)

(do) = 3.

Therefore, on account of Theorem 2.6, there exists some (a, b, ¢,€) near
(—0.6752733748,2.012910062, —2.337636687, 0)

such that system (H.) has 3 limit cycles near the saddle loop L_1 . O

140

Proposition 3.4. There exists some values (a,b,c,€) for which the system (Hg) can have 4 limit
cycles, from which one limit cycle is near the nilpotent center Lo, two limit cycles are near the saddle

loop Lﬁ and the fourth limit cycle lies between the center Lo and the homoclinic loop Lﬁlo'

Proof. Tt is easily seen that the set of equations {co(d) = ¢1(d) = by(d) = 0} has a unique solution
at 8o = (a,b,¢) = (0,0.04840055616, —1.048400556). By substituting this into b1 (8) and c(8) we
find that b;(dp) = 0.3340261655 > 0, c2(dy) = —.95159944361/2 < 0. Hence, for hy = 0 + &1,
hy = Elo — g9 with €1 and &5 positive and very small, we have

5 7
I(h1,00) = b1(do)hi + O(hy) >0,
I(hg,do) = 02(50)(h2 — hs) In ‘hz — hg| + O(|h2 — hSD < 0,
1-— Sgn(I(hl, 50)I(h2, 50))
2

=1.

On top of that, it is easily seen that

d(co(8),c1(0),b0(0))
d(a, b, c)

rank

(do) = 3.

Therefore, due to Theorem 2.6, there exists some (a, b, ¢, £) near (0,0.04840055616, —1.048400556, 0)
such that system (H) has 4 limit cycles, from which one limit cycle is near the nilpotent center Ly,
two limit cycles are near the saddle loop Lrlo and the fourth limit cycle lies between the center L
and the homoclinic loop L S O

Proposition 3.5. There exists some values (a,b, c,e) for which the system (H.) can have 4 limit
cycles, from which one limit cycle is near the homoclinic loop L 1 , two limit cycles are near the

nilpotent center Lo and the last limit cycle lies between the center Ly and the homoclinic loop L%O.

Proof. Tt is easily seen that the set of equations {by(d) = b1(d) = ¢o(d) = 0} has a unique solution
at o = (a,b,¢) = (0,0,0.05455601370). By substituting this into ba(d) and ¢1(d) we find that



ba(d0) = 0.6539383216 > 0, ¢1(dp) = —3.686808753 < 0. Hence, for hy =0+ &1, he = ﬁ — g9 with
€1 and &9 positive and very small, we get

7 9
I(hy,00) = ba(do)hi + O(h{) >0,
I(ha,80) = c1(60)|ha — hs|? + O(|hg — hy|In|hs — hy|) < 0,
1 — sgn(I(h1,00)I(h2,d0))
2

=1

Moreover, one can easily prove that

d(bo(9),b1(6), c0(9))
d(a,b,c)

rank (60) = 3.

Therefore, by using Theorem 2.6, there exists some (a, b, ¢, &) near (0,0,0.05455601370, 0) such that
system (H.) has 4 limit cycles, from which one limit cycle is near the homoclinic loop L%O, two
limit cycles are near the nilpotent center Ly and the last limit cycle lies between the center Ly and
the homoclinic loop Lﬁlo. O

For the distribution of the limit cycles obtained above, see Figure 2.

Figure 2: The distribution of the limit cycles bifurcated from the period annulus of system (Hy).

(d)

4 The number of zeros of the Abelian integral I(h)

In this section, we will study the maximum number of limit cycles that can bifurcate from the period
annulus of system (Hp) for 0 < e < 1. We will use an algebraic criterion developed in [Grau et
al., 2011] to study the Abelian integral I(h) of system (H.). In fact, it will be shown that the base
functions {Io(h), I1(h), Is(h), Is(h)} in the Abelian integral I(h) form a Chebyshev system with
accuracy 1. Hence, the number of isolated zeros of I(h) in the open interval (0, ﬁ) is at most four.

We notice that the Abelian integrals I;(h) of (4) take the form I;(h) = 55% riy?* "z, i =0,1,3,5
with s = 1 and the Hamiltonian function H(x,y) in (3) takes the form H(x,y) = A(z) + B(x)y*™
where A(z) = —% 7 + % o % x® + % zt, B(z) = % and m = 1. The projection of the period annulus
on the z-axis is (z1,1) and A (x) > 0 for all z € (z;,1) \ {0}, here

1 (35o+105\/ﬁ)2/335+5€/350+105\/ﬁe( 351 175) a3)

T V/350 + 105 /15 10247 512

Therefore, there exists an involution function z(x) with x; < z(x) < 0 such that A(x) = A(z(x)) for
all 0 < & < 1. Recall that a C' mapping z : I — I is an involution when z?> = i.d. and z # i.d.
Note that an involution is a diffeomorphism with a unique fized point.

Now we restate Theorem A of [Manosas & Villadelprat, 2011] and Lemma 4.1 of [Grau et al., 2011]
below, which are essential in our analysis on the number of isolated zeros of I(h).

Lemma 4.1. Consider the Abelian integrals

Ii(h) = fi(x) y**tdz, i=0,1,..,n—1,
Ly

10



where Ly, for each h € (0, hg), is the level curve {A(z) + B(z)y*™ = h}, and define

) AW
W)= @y T AGeE)

Now suppose the followig conditions, are satisfied:

(i) Wllo, ..., 1;] is non-vanishing on (0,x,) fori=0,1,....n — 2.

(ii) Wllo, ..., ln—1] has k zeros on (0,z,) counted with multiplicities, and

(iii) s > m(n+k —2).

Then any nontrivial linear combination of Iy, I1,...,I,—1 has at most n + k — 1 zeros on (0, hg)
counted with multiplicities. Here, the notation W |fo, -+, fn] stands for the Wronskians of the smooth

functions (fo,--- , fn)-

Usually condition (iii) in Lemma 4.1 does not hold, and hence we can not apply Lemma 4.1
directly. To overcome this problem, we can use the next result (see [Grau et al., 2011], Lamma 4.1)
to increase the power of y in the differential 1-form associated to the integral I;(h) defined above.

Lemma 4.2. Let L;, be an oval with the level curve A(z) + B(x)y? = h and consider a function F
such that % s analytic at x = 0. Than, for any k € N,

j{ F(x)y"2dx = j{ G (x)y"da
Lh Lh

where G(z) = %(i{r)/(x) - (BIL;,F)(:E)

But in our case, m = 1, n =4 and s = 1, therefore the condition s > m(n+k —2) is not fulfilled
even for k = 1. To overcome this problem, we will use Lemma 4.2 and will obtain new Abelian
integrals for which the corresponding s is large enough to verify the inequality. Here, the power s
has to be promoted to three so that the condition s > n + k — 2 holds.

On the oval Ly, the following expression holds

L(h) = ;72 (A(:I:)—f—y;) ydx (14)

1 . )
= — (j{ 2z Ax)ydx —|—f a:zy?’dw) , 1=0,1,3,5.
2h Ly, Ly,

Now we apply Lemma 4.2 with k = 3 and F(x) = 22°A(z) to the first integral above to get

?{ inA(x)yd:r:]{ Gi(2)y’dz,
Ly

Ly
where G;(z) = %(22,‘5?)) = _215](25?1)4’ with
gi(x) = =352 (i+1)+ 72 (144+170) — 1422 (9 +114) + 1023 (8 4+ 94) — 2024 (i +1).

By (14) we obtain that

L(h) = % J (:vi—i—Gi(:L‘))y?’d:c:# b 24+ ) + G (19)

_ # (7{& oz +Gi(x)),4(x)y3dx+£h(xi +Gi(x))y5d$> :

11



Again we apply Lemma 4.2 with k = 5 and F(x) = 2(z* + G;(x))A(x) to the first integral above to
get

}{ 2(z" 4 Gi(x)) A(x)y3de = H;(x)y dx,
Lh Lh
'+ G, (z)) Az hi(x .

hl(.’L‘)

—12252 (i +7) (i + 1) + 245 2" T (226 + 2814 + 344%) — 492" (3394 + 4405 i + 509 47)
28 213 (10676 + 140274 + 153447) — 142" (24857 + 322894 + 3324 4°)

702"+ (3806 + 480147 + 4644%) — 202" 1® (6503 + 7864 i + 7134°)

10027 (368 + 4234 + 364%) — 200" % (27 + 23) (i + 1) .

+ o+ +

Now we can write

L(h) = 47112 ( ]fL @ Gi) + Hi(x))y5d:r> _ # ( ﬁ (24() )6+ Gile) + Hi(:c))y5dx)
_ 87113 ( ]fL 2t 4 Gila) + Hilr) Al + fL @ Gila) + Hi(x))y7dx> . (16)

Again we will apply Lemma 4.2 with k = 7 and F(x) = 2(2* +G;(z) + H;(x)) A(x) to the first integral
above to get

§ 2+ i) + B A= § KT,
Ly, Ly

_ _d (2 +Gi(a)+H(z)Az)\ _ ki(2) :
where Ki(x) = =5 ( A(z) ) = 36015000(x—1)12 With

ki(z) = 428752' (i+11)(i+7) (i + 1) — 257252 (1310 + 17034 + 3334 + 174°)
+ 17152"72 (95058 + 1278221 + 24283 4% + 11974°)
— 4923 (10021984 + 13732156 i + 2523089 i* + 119681 4°)
+ 982" (10417314 + 14366612 i + 25447274 + 115869 4°)
—  2942"" (5227940 + 7183236 ¢ + 1223831 4> + 53403 4°)
+ 56270 (30586815 + 41522047 i + 6794274 4> + 283844 4°)
—  1402""7 (10141200 + 135092567 + 212111372 + 84801 4°)
+ 420" (2063665 + 2682949 + 404038 i* + 15458 i°)
— 1002""? (3793174 + 4792425 i + 692174 > + 25350 %)
+ 200219 (563877 + 690095 i 4 95614 > + 33544°)
— 1000 2" (20424 + 24155 + 32124 + 1084%)
+ 2000212 (20 +23) (20 +37) (i + 1) .

Finally we conclude that
8R3L(h) = ¢ fi(x)y dx = I;(h), (17)
Ly

where fi(z) = x' 4+ Gi(z) + Hi(x) + Ki(x). It is clear that {Iy, 11, I3, I5} is an extended complete
Chebyshev system with accuracy 1 on (0, 135) if and only if {Io, I1, 13,15} is as well. Now we can

12



apply Lemma 4.1, since s = 4 and hence the condition s > m(n + k — 2) holds when k = 1. Thus,

by setting
b= (2) @ - (£) e,

it is needed to check that {€o,¢1,¢3,05} is a complete Chebyshev system of accuracy 1 on x € (0,1).
As a matter of fact, by proving the next lemma, it will be shown that {£y,l1,03,05} is an extended
complete Chebyshev system with accuracy 1.

Lemma 4.3. It holds that

[
(i7) Wl b1](x) #0 for all z € (0,1);
(i1i) Wby, l1,43)(z) #0 for all z € (0,1);
(iv) Wby, l1,0s,05)(x) #0 for all z € (0,1)\{z"},

where x* € (0,1) will be introduced in the proof.

Proof. By an easy computation, it is easily seen that the involution z = z(z) for = € (0, 1) satisfies

1
Alz) — A = ——(z— =
(€)= AG) =~ 2)alw2) =0,
where
q(z,2) = 2025 —702° + 20225 + 842 — 70 22* + 20 222 — 3523 + 84 22® — 70 2223

+ 202323 — 35222 + 842222 — 702223 + 20222 — 35222 + 84 123 — T0 x2*
+ 2022° —352% 4842 — 7025 + 2025,

By using Maple 18, it is founded that

(x — 2)Wo(z, 2)

12005000 (z — 1)*° 3 (z — 1)"° 23
(x — 2)3Wi(z, 2)
©14412002500000026 (2 — 1)* 26 (2 — 1)*° Woy (z, 2)
3(z — 2)Wa(x, 2)
~ 86508045006250000000028 (2 — 1) 28 (2 — 1) W2 (2, 2)’
3(x — 2)0Ws(x, 2)

5192645401500156250000000000 (z — 1)*° 210 (z — 1)* 210WE (x, z)’

Wlto](x) =

)

Wiy, ta](z) =

W[€0,£1,€3]($) =

W[€0,£1,£3,€5]($) =

where W;(z, z), i = 0,1, 2 are polynomials with long expressions in (z, z) and

Woi(z,2) = 202° —702* + 8423 — 3527 — 105 2% + 336 2> — 350 2* + 120 2° + 40 za* — 140 223
+ 60 2%23 + 168 2% — 210 2222 + 802223 — 70 2z + 252 2% — 280 22 + 100 222,

The resultant with respect to z between Wy, (z, 2) and ¢(z, z) is
poi () = 53782400000 2° (202° — 702 + 842 — 35)° (202% + 102% + 4z +1)° (2 — 1)°.

By using Maple 18, it is easy to see that pop1(z) does not have any zeros in (0,1). This implies that
Wb, €1], Wby, l1, 3] and Wty £y, L3, 5] are well defined in the domain z; < 2 < 0 < x < 1.
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In order to determine if these four Wronskians have zeros on (0,1), we shall rely on the symbolic
computations by Maple 18 under Linux to compute the resultant between W;(x, z), i =0,1,2,3 and
q(zx, z) with respect to z, and then we will apply Sturm’s Theorem to assert nonexistence of zeros of
pi(x), i =0,1,2,3, in (0,1) where p;(x) are polynomials of high degree in x that will be described
below.

Case (i). The resultant with respect to z between g(z, z) and Wy (z, 2) is Ro(z) = 25 (z — 1) po(2),
where pg(z) is a polynomial of degree 126 in . By applying Sturm’s Theorem we get that po(z) # 0
for all € (0,1). Thus, Wy(z, z) = 0 and ¢(x, z) = 0 have no common roots. This fact implies that
W llo)(z) # 0 for all z € (0,1).

Case (ii). The resultant with respect to z between q(z, z) and Wy (z, z) is Ry (z) = 216 (z — 1)** py (2),
where p; () is a polynomial of degree 268 in x. By applying Sturm’s Theorem we get that p; (z) # 0
for all x € (0,1). Thus, Wi(z, z) = 0 and ¢(x, z) = 0 have no common roots. This fact implies that
Wby, (1](z) # 0 for all z € (0,1).

Case (iii). The resultant with respect to z between q(z, z) and Wa(z, 2) is Ry(z) = 228 (z — 1)"*® pa(2),
where pa(z) is a polynomial of degree 422 in xz. By applying Sturm’s Theorem we see that ps(x)
has a unique zero in the open interval (0,1). Therefore the method used in cases (i) and (i%) fails
to work in this case. In order to make sure if Ws(x, z) and ¢(x, z) have common roots, we use the
direct program with Maple 18 (under Linux) to find all the intervals in which all the common roots
of Wa(x, z) and ¢(z, z) on the whole plane may occur.

with(RegularChains):
with(ChainTools):
with(SemiAlgebraicSetTools) :
R := PolynomialRing([x,z]):
sys := [w_2(x, 2), qx, 2)]:
dec := Triangularize(sys, R);
[regular_chain, regular_chain, regular_chain]
> L := map(Equations, dec, R);

V V V V V V

Hkl(xvz)>k2(2)]’ [l‘ —1,z- 1]7 [Z‘,ZH

where ki(x, z) = ki1(2)x + k12(2), k11 is a polynomial in z of degree 421, k15 is a polynomial in z
of degree 421 and ks is a polynomial in z of degree 422. It is obvious that the second regular chain
and the third one do not have roots satisfying r; < z < 0 < x < 1 where x; =~ —0.3423840949, and
the first reqular chain [k1(z,2), ka(2)] is square-free and zero-dimensional (because the number of
variables equals the number of polynomials). L[1][1] and L[1][2] represent k1 and ko in Maple and
they have two and one variables, respectively. Therefore we need to change their order in the first
reqular chain.

> C := Chain([L[1][2], L[1]1[1]], Empty(R), R);
regular_chain

> RL := RealRootIsolate(C, R, ’abserr’ = 1/1075);

[box, box, box, box, box, box]
>evalf (map(BoxValues, RL, R));
[[x = [1.332499319, 1.332499319], z = [-.2175672857, -.2175672857]],
[x = [1.188453671, 1.188453671], z [-.3372832568, -.3372832568]],
[x = [-.2175672857, -.2175672856], = [1.332499319, 1.332499319]],
[x = [.5846840049, .5846840050], z [1.267152074, 1.267152074]11],
[x = [-.3372832568, -.3372832568], = [1.188453671, 1.188453671]],
[x = [1.267152074, 1.267152074], z = [.5846840050, .5846840050]]1].

I N

I N

From the result of the program, we see that there are 6 pairs of common roots of Wa(x, z) and q(z, )
in the above mentioned intervals, but no pairs satisfy v; < z < 0 < x < 1. This fact implies that
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Wty l1,ls])(x) # 0 for all x € (0,1).

Case (iv). The resultant with respect to z between q(x, z) and Ws(x, z) is Rs(z) = 2% (z — 1)'®® ps(a),
where p3(x) s a polynomial of degree 590 in x. By applying Sturm’s Theorem we find that ps(x)
has a unique zero in the interval (0,1). In order to make sure if Ws(z, z) and q(x, z) have common
roots, we use the direct program with Maple 18 as before to discover all the intervals in which all the
common roots of Ws(x,z) and q(x,z) on the whole plane exist.

with(RegularChains):
with(ChainTools):
with(SemiAlgebraicSetTools):
R := PolynomialRing([x,z]):
sys := [w_3(x, 2), qx, 2)]:
dec := Triangularize(sys, R);
[regular_chain, regular_chain, regular_chain]
> L := map(Equations, dec, R);

V V V V V V

[[T1($7Z),7‘2(2)], [:L‘ -1,z 1]’ [:LZ]]

where r1(x,z) = r11(2)x + r12(2), r11 is a polynomial in z of degree 589, 712 is a polynomial in z
of degree 589 and ry is a polynomial in z of degree 590. It is obvious that the second regular chain
and the third one do not have roots satisfying z; < z < 0 < x < 1 where z; &= —.3423840949, and
the first regular chain [rq(z, z),r2(2)] is square-free and zero-dimensional (because the number of
variables equals the number of polynomials). L[1][1] and L[1][2] represent r1 and ro in Maple and
they have two and one variables, respectively. Therefore we need to change their order in the first
regular chain.

> C := Chain([L[1][2], L[1]1[1]], Empty(R), R);
regular_chain
> RL := RealRootIsolate(C, R, ’abserr’ = 1/1075);
[box, box, box, box, box, box]
>evalf (map(BoxValues, RL, R));
[[x = [1.342226771, 1.342226771], z = [-0.8416542251, -0.8416542251]],

[x = [.7968688606, .7968688607], z = [-.3397589321, -.3397589321]],
[x = [-0.8416542254, -0.8416542248], z = [1.342226771, 1.342226771]],
[x = [-.3397589321, -.3397589321], z = [.7968688606, .7968688606]11].

As a result, we see that there are 4 pairs of common roots of Ws(z,z) and ¢(z,z) in the above
mentioned intervals, but exactly one pair satisfies ; < z < 0 < & < 1. Therefore, there is a unique
x* = 0.796868861 € (0, 1) such that W{ly, €1, €3, 5](z*) = 0. Hence the proof is complete. O

Corollary 4.4. The exact upper bound for the mazimal number of isolated zeros of I(h,¢), defined
in (4), is 4 on the open interval (0, fo)' Hence, the Liénard system (H.) can have at most 4 limit
cycles bifurcating from the corresponding period annulus.

Proof. Tt follows from Lemma 4.1 and Lemma 4.3 that {Iy(h), [1(h), I5(h),Is(h)} is a Chebyshev
system with accuracy 1 on (0, 115). In consequence, there are at most 4 zeros of I(h) on (0, 1i5)-
Therefore, there are at most 4 limit cycles of system (H,.) bifurcated from the period annulus {L; }},
of system (Hp). O
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