- English
- فارسی
- Home
- Biography
- Publications
- Bifurcations and Dynamics of a discrete predator-prey system
- Equationshttp://cmde.tabrizu.ac.ir
- Equationshttp://cmde.tabrizu.ac.ir
- The Chebyshev's property of certain hyper elliptic intefrals of the first kind
- http://authors.elsevier.com/a/1QXnG3QI~F58re
- http://authors.elsevier.com/a/1QXnG3QI~F58re
- http://authors.elsevier.com/a/1Rd-o3QI~F59L4
- http://authors.elsevier.com/a/1Rd-o3QI~F59L4
- http://cmde.tabrizu.ac.ir
- http://dx.doi.org/10.1080/17513758.2014.927596
- http://www.worldscinet.com/ijbc/mkt/guidelines.shtml
- https://doi.org/10.1007/s12591-018-00448-6
- https://doi.org/10.1016/j.bulsci.2019.102810
- https://doi.org/10.1016/j.bulsci.2019.102810
- https://doi.org/10.1016/j.chaos.2018.05.023
- https://doi.org/10.1016/j.chaos.2020.110291
- https://doi.org/10.1016/j.jmaa.2017.05.064
- https://doi.org/10.1142/S0218127416500255
- https://doi.org/10.1142/S0218127417500559
- Research Projects
- Teaching
- Students
- Laboratories
- DOI: 10.1142/S0218127421501492
- DOI: 10.1142/S0218127421501492
- DOI: 10.1142/S0218127422501322
- DOI: 10.1142/S0218127422501322
- DOI: 10.12775/TMNA.2021.024
- DOI: 10.12775/TMNA.2021.024
- Differential Equations and Dynamical Systems https://doi.org/10.1007/s12591-022-00599-7
- Dr. Rasoul Asheghi
- Hopf bifurcation analysis in a delayed model of tumor therapy with oncolytic viruses
- Hopf bifurcation analysis in a delayed model of tumor therapy with oncolytic viruses
- Optimal control of an HIV infection model with logistic growth, cellular and homural immune response, cure rate, and cell-to-cell spread
- Optimal control of an HIV infection model with logistic growth, cellular and homural immune response, cure rate, and cell-to-cell spread
- Stability and Dynamic of HIV-1 Mathematical Model with Logistic Target
- Stability and Dynamic of HIV-1 Mathematical Model with Logistic Target Cell Growth, Treatment Rate, Cure Rate and Cell-to-cell Spread
- The Monotonicity of the Ratio of Two Line Integrals in Piecewise Smooth Differential Systems
- The monotonicity of the ratio of two hyperelliptic Abelian integrals for a class of symmetric potential systems of degree eight
- http://authors.elsevier.com/a/1QXnG3QI~F58re
- http://authors.elsevier.com/a/1QXnG3QI~F58re
- http://authors.elsevier.com/a/1Rd-o3QI~F59L4
- http://dx.doi.org/10.1080/17513758.2014.927596
- http://www.worldscinet.com/ijbc/mkt/guidelines.shtml
- https://doi.org/10.1007/s12346-018-0284-1
- https://doi.org/10.1007/s12346-018-0284-1
- https://doi.org/10.1007/s12346-018-0284-1
- https://doi.org/10.1007/s12591-018-00448-6
- https://doi.org/10.1007/s13398-022-01333-2
- https://doi.org/10.1007/s13398-022-01333-2
- https://doi.org/10.1016/j.bulsci.2022.103130
- https://doi.org/10.1016/j.chaos.2015.01.009
- https://doi.org/10.1016/j.chaos.2017.06.021
- https://doi.org/10.1016/j.chaos.2017.06.021
- https://doi.org/10.1016/j.chaos.2018.05.023
- https://doi.org/10.1016/j.jmaa.2017.05.064
- https://doi.org/10.1142/S0218127417500559
- https://doi.org/10.1142/S0218127418500049
- https://doi.org/10.1142/S0218127418500049